A Two-level Method with Backtracking for the Navier-stokes Equations
نویسنده
چکیده
We consider a two-level method for discretization and solution of the equilibrium Navier-Stokes equations. The method yields an L 2 and H 1 optimal velocity approximation and an L 2 optimal pressure approximation. The 2-level method involves solving one small, nonlinear coarse mesh system, one Oseen problem (hence linear with positive deenite symmetric part) on the ne mesh and one linear correction problem on the coarse mesh. The analysis of the method is complicated by the fact that the corrected approximation is not discretely divergence free on the ne mesh.
منابع مشابه
Optimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملScientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations
The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...
متن کاملA comparative study between two numerical solutions of the Navier-Stokes equations
The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...
متن کاملA Parallel Nonlinear Additive Schwarz Preconditioned Inexact Newton Algorithm for Incompressible Navier-Stokes Equations ?
A nonlinear additive Schwarz preconditioned inexact Newton method (ASPIN) was introduced recently for solving large sparse highly nonlinear system of equations obtained from the discretization of nonlinear partial differential equations. In this paper, we discuss some extensions of ASPIN for solving the steady-state incompressible Navier-Stokes equations with high Reynolds numbers in the veloci...
متن کاملInvestigation of instable fluid velocity in pipes with internal nanofluid flow based on Navier-Stokes equations
In this article, the instable fluid velocity in the pipes with internal nanofluid is studied. The fluid is mixed by SiO2, AL2O3, CuO and TiO2 nanoparticles in which the equivalent characteristic of nanofluid is calculated by rule of mixture. The force induced by the nanofluid is assumed in radial direction and is obtained by Navier-Stokes equation considering viscosity of nanofluid. The displac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998